Mapping welfare estimates from discrete choice experiments

Danny Campbell

Queen's University Belfast – d.campbell@qub.ac.uk

Choice Modelling Workshop 1–2 May, 2008 Brisbane, Australia

This presentation details the work and analysis presented in:

Campbell D., Hutchinson W.G., Scarpa R. (forthcoming) Using choice experiments to explore the spatial distribution of willingness to pay for rural landscape improvements. *Environment and Planning A*.

Presentation outline

- Policy framework
- Aims and motivation
- Spatial issues and WTP
- 2 Data and methods
 - Data
 - Choice model
 - Spatial interpolation
- 3
 - Results
 - Choice model
 - Willingness to pay (WTP)
 - Spatial autocorrelation of WTP
 - Spatial interpolation of WTP
 - Conclusions
 - Conclusions

Policy framework Aims and motivation Spatial issues and WTP

Policy framework

- Agri-environmental schemes have become an important component within the European Union's Common Agricultural Policy.
- Within this context, the Rural Environment Protection (REP) Scheme was introduced in the Republic of Ireland in 1994.
 - The Scheme provides incentives for farmers to maintain and improve the rural environment.

Policy framework Aims and motivation Spatial issues and WTP

Aims and motivation

- Use choice experiments to elicit WTP for the landscape benefits resulting from the REP Scheme.
- Use geostatistical methods to extend across the whole of the study area the WTP estimates derived from the collected data.
- Highlight any inherently spatial patterns.

Policy framework Aims and motivation Spatial issues and WTP

Why examine the spatial distribution of WTP?

- Aggregate measures of WTP can obscure local patterns of heterogeneity.
- Spatial analysis provides different insights about WTP—its distribution, regional and local outliers, regional trends, and the degree of spatial dependence.
- While calculating WTP is useful for policy evaluation, it is also useful to know its spatial distribution.
 - Locating areas of value allows more efficient targeting of efforts.

Policy framework Aims and motivation Spatial issues and WTP

Variations of WTP across space

- Spatial variation in WTP may be a consequence of a number of factors.
 - The socio-demographic distribution of the population is likely to influence the geographic distribution of WTP.
 - Environmental non-market goods themselves are spatially arranged.

Policy framework Aims and motivation Spatial issues and WTP

Identification of spatial patterns of WTP

- Comparing regional variations in choice models typically requires, either:
 - The estimation of separate models to be estimated for each region.
 - The inclusion of additional location variables in the choice model.
- Both can be adequately used to compare preferences across a relatively small number of regions—but are arguably less suited when the aim is to compare preferences across a relatively large number of regions.

Data Choice model Spatial interpolation

Attributes

- Following a lengthy consultation process with policy experts and members of the general public the following attributes were developed.
 - Mountain Land.
 - Stonewalls.
 - Farmyard Tidiness.
 - Cultural Heritage.
- The cost attribute was described as an increase in the respondent's Income and Value Added Tax.

Data Choice model Spatial interpolation

Farmyard tidiness: No action

Data Choice model Spatial interpolation

Farmyard tidiness: Some action

Data Choice model Spatial interpolation

Farmyard tidiness: A lot of Action

Introduction Data and methods Results

Data Choice model Spatial interpolation

Choice task

	Option A	Option B	No Action
Mountain Land	- Art		
Stonewalls	A Lot Of Action	No Action	No Action
	HAR ALS		
	A Lot Of Action	Some Action	No Action
Farmyard Tidiness			
	A Lot Of Action	Some Action	No Action
Cultural Heritage		And Long to	Contraction of the
	A Lot of Action	Some Action	No Action
Expected Annual Cost	€ 80	€ 20	€0

Data Choice model Spatial interpolation

Sampling frame

- To achieve a spatially representative sample, the population was stratified according to five different community types within four standard areas within Ireland.
- Electoral Divisions were chosen within each stratum.
- Six individuals were sampled within each of the pre-selected Electoral Divisions.

Data Choice model Spatial interpolation

Random parameters logit model

- Random parameters logit models provide a flexible and computationally practical econometric method.
- Such models also accommodate the estimation of individual-specific preferences by deriving the conditional distribution (within sample) on the choices (*x_n* and *y_n*) made by the each respondent, *n*.

Data Choice model Spatial interpolation

Random parameters logit model (con'd)

 With knowledge of these parameters, individual-specific WTP estimates can be approximated by simulation as follows:

$$\hat{E}\left[WTP_{n}\right] = \frac{\frac{1}{R}\sum\limits_{R} - \frac{\hat{\varphi}_{n}}{\hat{\gamma}_{n}}L\left(\hat{\beta}_{nr}|y_{n},x_{n}\right)}{\frac{1}{R}\sum\limits_{R}L\left(\hat{\beta}_{nr}|y_{n},x_{n}\right)},$$

where $\hat{\varphi}$ are the landscape attribute parameters, $\hat{\gamma}$ is cost parameter, $\hat{\beta}$ is the vector of parameters, *L* is the logit probability and *R* is the number of simulated draws.

Data Choice model Spatial interpolation

Random parameters logit model (con'd)

- To ensure non-negative WTP estimates all attributes are specified as random with constrained triangular distributions.
- The log-likelihood function is estimated with simulated Halton draws.

Data Choice model Spatial interpolation

Kriging

- To elucidate the geographical dimension of WTP, the individual-specific WTP estimates are spatially interpolated.
 - With spatial interpolation, WTP values can be used as a method of benefit transfer by predicting WTP values for all locations in the study area.
- The interpolation method of ordinary Kriging is adopted because our *a priori* expectations of spatially autocorrelated WTP estimates.
 - It is based on the assumption that nearby values contribute more to the interpolated values than distant observations.

Data Choice model Spatial interpolation

Kriging (con'd)

• The general Kriging formula used to interpolate the WTP values is formed as a weighted sum of the data:

$$\hat{Z}[WTP_0] = \sum_{i=1}^n \omega_i Z(WTP_i),$$

• where $\hat{Z}[WTP_0]$ is the predicted WTP estimate at an unsampled location, ω_i is an unknown weight for WTP at the *i*th location, $Z(WTP_i)$ is the individual-specific WTP at the *i*th sample point and *n* is the number of measured values.

Choice model Willingness to pay (WTP) Spatial autocorrelation of WTP Spatial interpolation of WTP

Random parameters logit model

	beta	t-ratio
Mountain Land: A Lot Of Action	1.041	12.2
Mountain Land: Some Action	0.598	10.1
Stonewalls: A Lot Of Action	0.870	14.9
Stonewalls: Some Action	0.531	9.5
Farmyard Tidiness: A Lot Of Action	0.794	14.1
Farmyard Tidiness: Some Action	0.502	9.2
Cultural Heritage: A Lot Of Action	0.587	10.2
Cultural Heritage: Some Action	0.577	9.9
Cost	-0.012	-10.6
$\overline{\mathcal{L}}$		3,775
ρ^2		0.201

Choice model Willingness to pay (WTP) Spatial autocorrelation of WTP Spatial interpolation of WTP

Individual-specific WTP: Mountain Land

Choice model Willingness to pay (WTP) Spatial autocorrelation of WTP Spatial interpolation of WTP

Individual-specific WTP: Stonewalls

Choice model Willingness to pay (WTP) Spatial autocorrelation of WTP Spatial interpolation of WTP

Individual-specific WTP: Farmyard Tidiness

Choice model Willingness to pay (WTP) Spatial autocorrelation of WTP Spatial interpolation of WTP

Individual-specific WTP: Cultural Heritage

Choice model Willingness to pay (WTP) Spatial autocorrelation of WTP Spatial interpolation of WTP

WTP across EDs

		Standard	Coefficient
	Mean	deviation	of variation
	(€)	(€)	(%)
Mountain Land: A Lot Of Action	135	42	31
Mountain Land: Some Action	76	14	19
Stonewalls: A Lot Of Action	104	23	22
Stonewalls: Some Action	65	11	17
Farmyard Tidiness: A Lot Of Action	99	21	22
Farmyard Tidiness: Some Action	61	13	21
Cultural Heritage: A Lot Of Action	78	21	26
Cultural Heritage: Some Action	73	15	21

Choice model Willingness to pay (WTP) Spatial autocorrelation of WTP Spatial interpolation of WTP

Spatial autocorrelation

	Moran's <i>I</i> 1	Ζ
Mountain Land: A Lot Of Action	0.512	9.4
Mountain Land: Some Action	0.384	6.9
Stonewalls: A Lot Of Action	0.414	7.6
Stonewalls: Some Action	0.241	4.5
Farmyard Tidiness: A Lot Of Action	0.322	5.8
Farmyard Tidiness: Some Action	0.426	7.8
Cultural Heritage: A Lot Of Action	0.522	10.1
Cultural Heritage: Some Action	0.427	7.7

¹Moran's *I* is a spatial statistic used to determine spatial autocorrelation.

Choice model Willingness to pay (WTP) Spatial autocorrelation of WTP Spatial interpolation of WTP

Spatial distribution of WTP: Mountain Land

Danny Campbell

Choice model Willingness to pay (WTP) Spatial autocorrelation of WTP Spatial interpolation of WTP

Spatial distribution of WTP: Stonewalls

Danny Campbell

Choice model Willingness to pay (WTP) Spatial autocorrelation of WTP Spatial interpolation of WTP

Spatial distribution of WTP: Farmyard Tidiness

Danny Campbell

Choice model Willingness to pay (WTP) Spatial autocorrelation of WTP Spatial interpolation of WTP

Spatial distribution of WTP: Cultural Heritage

Danny Campbell

Choice model Willingness to pay (WTP) Spatial autocorrelation of WTP Spatial interpolation of WTP

Validation results for ordinary Kriging

		Mean error
Attribute	Mean error	(standardised)
Mountain Land: A Lot Of Action	0.915	0.004
Mountain Land: Some Action	0.508	0.028
Stonewalls: A Lot Of Action	0.713	0.019
Stonewalls: Some Action	0.269	0.023
Farmyard Tidiness: A Lot Of Action	0.682	0.028
Farmyard Tidiness: Some Action	0.443	0.022
Cultural Heritage: A Lot Of Action	0.560	0.008
Cultural Heritage: Some Action	0.357	0.016

Conclusions Questions

Conclusions

- Mapping WTP estimates derived from discrete choice experiments is a valuable tool and adds considerably more explanatory power to the computed welfare estimates.
- Results indicate evidence of spatial dependence, thus indicating spatially dynamic intensities of tastes for the different rural landscape attributes.
- The results also have important policy implications.

Conclusions Questions

Questions